
BRA - An Algorithm for Simulating Bounded

Rational Agents ∗

Stephan Schuster

June 1, 2010

Abstract

This paper describes a simulation approach for modelling decision-
making processes under incomplete and imperfect information in Agent-
based Computational Economics (ACE). The main idea is to represent
decision-making in a model-free framework that can be applied to a larger
set of simulation problems, not just the domain modelled. The method
translates some basic sociopsychological concepts from the bounded ra-
tionality and learning literature into an executable algorithm. In a simple
example, the algorithm is applied in the domain of behavioural game the-
ory, illustrating how the algorithm can be used to reproduce observed
patterns of human behaviour.

JEL Classification C63

1 Introduction

In the economic literature, several approaches for modelling human decision
making under uncertainty and imperfect information exist. These approaches,
often summarised under a broad notion of bounded rationality, modify the or-
thodox definition of perfectly informed and hyperrational agents with simpler,
psychologically more plausible behaviour. Thus, for example, subjective ex-
pected utility theory acknowledged that individuals are not fully informed and
replaced objective probabilities with subjective. Prospect Theory (Kahnemann
and Tversky 1979) modified perfect rationality by stating that human decisions
are biased by the anticipation of future losses rather than gains, which explains
deviations from the maximising principle. While such theories are modifica-
tions of rational choice, Simon (Simon 1956a) introduced with the satisficing
principle a psychological perspective into decision theory. Satisficing agents de-
viate from rational choice behaviour by not maximising, but rather searching
for satisfactory alternatives.

∗This is a reprint of the publication in Computational Economics. The official version
available at: www.springerlink.com

1

Decision theory formally treats decisions under various degrees of certainty;
learning theory on the other hand is interested how actors learn about their en-
vironment and alternatives and to make better choices over time. Also here, be-
havioural approaches have been introduced as an alternative to rational (Bayesian)
updating of beliefs. A popular approach to modelling learning in Game Theory
is Reinforcement Learning (RL). For example, Erev and Roth tested the pre-
dictive capabilities of simple RL models by comparing theoretical results with
data from behavioural game theory experiments (Erev and Roth 1998; Roth
and Erev 1995). Some models add also simple belief components: Camerer and
Ho’s ’Experience Weighted Attraction’ learning model combines reinforcement
learning and fictitious play in games (Camerer and Ho 1999).

ACE models typically model agents with imperfect and incomplete infor-
mation and local interactions. Learning and decision-making is typically repre-
sented ad hoc, and introduced as the need arises. Often, RL approaches have
been applied. Only few models use more generic approaches, for example Learn-
ing Classifier Systems (e.g. LeBaron et al 1999; Kirman and Vriend 2001; LCS).
LCS represent decisions in form of simple if-then rules, of which initially several
actions are proposed in a certain situation. A learning algorithm is respon-
sible for searching and selecting the best rules. An alternative representation
comes from psychology, where the cognitive architecture CLARION has been
applied to social simulation (Sun and Naveh 2007). In CLARION, agents learn
by a combination of rule extraction and RL. For an overview of how learning is
represented in ACE models, see Brenner (2006).

The algorithm presented here proposes a simple generic decision model for
boundedly rational, adaptive artificial agents in ACE models. Instead of asking
how learning can be represented in a concrete model, the idea here is to build
on a framework for a wider range of applications. Due to its general nature,
the approach is therefore quite pragmatic - operationalisation and its applica-
tion as computer program are central design issues. The contribution of this
paper is of a technical nature and lies in the combination of machine learning
techniques with simple sociopsychological concepts of learning. Technically, it
is similar to LCS or CLARION, but designed more specifically for economic
decision problems.

The paper is structured as follows: First, the simple conceptual model of
the Bounded Rationality Algorithm (BRA) is presented, before being specified
formally as algorithm, and compared with similar approaches. An example
demonstrates how the algorithm works in practice and to what types of problems
it may be applied.

2 Concept

The algorithm assumes agents that start with very limited information about
the world, and possess no causal model of how their actions affect themselves
or their environment. The goal is to build an internal representation of the
environment and increase its knowledge about the world in order to guide its

2

decisions. The following paragraphs outline the prototypical (human) mental
model that forms the basis of the approach.

A mental model is an internal representation of an external reality. It is
built using experience, perception, and existing problem-solving strategies. A
mental model contains minimal information, is unstable and subject to change
and used to make decisions in novel circumstances. A mental model must be
’runnable’ and able to provide feedback about the results. Humans must be
able to evaluate the results of actions or the consequences of a change of state
(Markham 1999). Assuming in a simplified manner that humans are mainly
interested in own welfare, their goal is to find suitable behaviour strategies that
optimise utility under different conditions. Information processing and memory
is costly, so that the internal model being built has to be minimal and efficient.
Three main phases can be distinguished here:

• Evaluate cognitive cues: In any state of the environment, the agent must
be able to choose an action. If low or even negative rewards are experi-
enced, the agent can attempt to apply a different action. If this fails to
improve the agent’s welfare, this is a hint to pay attention to more cues
from the environment and distinguish better between different situations.

• Decide what to know: Paying attention to all cues from the environment
is computationally too expensive and memory too limited; humans must
filter out certain aspects of their perception in order to decide and act ef-
fectively. An agent has to ’decide what to know’ (Rubinstein 1998). Since
the measurement of useful information is the agent’s welfare generated
by its actions, this decision procedure can be represented a search over
all possible state-action mappings. If the agent is satisfied with a mental
model containing a subset of these mappings, it might stop searching for
a better model or decrease its search intensity.

• Update the cognitive model: If the environment changes, some aspects of
the internal model might become obsolete. The agent will then experience
a change in utility. In certain states, learning new actions might be suf-
ficient. However, it might also be that the representation of the state is
not accurate anymore (e.g. a new type of agent appears). In this case the
representation has to be changed, e.g. by removing old representations
and start the search process anew for certain parts of the model.

Simon (Simon 1956b) already lined out a concept of how an organism can learn
these relationships. His framework is based on the following components:

• The set of behaviour alternatives A

• The set choice alternatives A′ for bounded rational or computationally
less powerful individuals; this set may be only a subset of A.

• Possible future states S

• Payoffs connected with S, represented as a function of S, V (s).

3

• Probabilities for S. There is uncertainty which sate occurs after a partic-
ular behaviour.

Bounded rational individuals do not typically know the mapping from be-
haviour alternatives A to future welfare V (s). A possible strategy to learn about
the occurrence and the desirability of these future states is according to Simon:
Start with a mapping of each action alternative a ∈ A to the whole set of S.
Using a utility function such as V (s) ∈ {−1, 0,+1}, find S′ ⊂ S such that (ex-
pectedly) V (s) = 1. Then gather information to refine the mapping A → S′

(i.e., which actions lead to which result under certain conditions) and search for
feasible actions A′ ∈ A that map to S′ (Simon 1956b). This is a simple way to
represent (dynamic) knowledge about the environment with an action-centered,
experience-based approach.

As an example, consider an employer who faces the decision whether to hire
or not to hire a worker. A worker might be more or less highly skilled, which
is not directly observable without screening for additional attributes. At a very
coarse level, the possible current states are: ’worker is skilled’ and ’worker is not
skilled’. To the decision maker, these states are hidden (information is incom-
plete). After deciding whether to hire or not to hire, the possible future states
are: ’hired and worker skilled’; ’not hired and worker not skilled’; ’not hired and
worker skilled’; ’hired and worker not skilled’ - probably in this preference order.
Without taking into account any additional information, skilled and unskilled
workers will be hired with the same probability, using, for example, a blind or
random strategy as no clues from the environment exist. Taking a test, and
adding the results to the current state description allows a more accurate map-
ping. The initial states would be transformed into ’worker skilled and test was
good’, ’worker not skilled and test was good’, ’worker skilled and test was bad’,
’worker not skilled and test result was bad’. Such additional information enables
the agent to estimate, after gaining some experience, the chance a worker with
a good or bad test result belongs to the group of skilled workers or not.

The BRA algorithm formalises a similar idea as Simon, but simplifies it
further. The important difference is that state and transition probabilities are
not represented explicitly. The agents considered here are simpler, act more
subconsciously and choose their actions probabilistically based on the average
reward. The average reward of an action reflects the desirability of that action
in a given state, and can therefore be interpreted as a preference for an expected
outcome. In the hiring example, this means that the decision maker does not
calculate a transition probability matrix based on his alternatives, but learns
this relationship implicitly by experiencing a higher reward for hiring workers
with a good test result and translating this into a higher selection probability
of the hiring action.

3 The Algorithm

The basic idea of BRA is to build an internal, flexible model of the environ-
ment the agent lives in. The environment is accessible by the input state s ∈ S

4

defining the current ’situation’ the agent is in, where S denotes the input di-
mensions. The input state is matched with an internal symbolic representation
Ci ⊆ C : {c1 . . . cn} of that state. The agent then chooses an action according
to the general form ri : Ci → Ari ∈ DCi . Ari is the action set available in the
specified condition, C is the set of all possible conditions that can be generated
from S, and Ci is a collection of conditions derived from C. The action set
is fixed, closed, and defined within a certain domain of actions DCi applicable
in the state Ci. The alternatives are assumed to be always comparable and
complete.

Two main components are distinguished: RL (section 3.1) is responsible for
experience-based learning, state space partitioning (section 3.2) for rule extrac-
tion and the building of the internal model structure. Section 3.3 summarises
the algorithm as pseudo-code.

3.1 Reinforcement Learning

RL (e.g. Sutton and Barto 1998) is used to implement the dynamic aspect of
knowledge generation in the model. Agents learn by trial and error which action
to apply in a given state. Successful actions are rewarded. Actions which yield
a higher reward are selected with a high probability in the future, whereas bad
actions, receiving a lower reward, are selected less often. The history of these
reinforcements is summarised as action strength q. Whenever an action a has
been applied, the strength is updated with the reward p(t) observed for that
action by the following equation:

q(at) = q(at−1) + γ(p(t)− q(at−1)) (1)

This action-value function updates the strength of the current action based on
the weight γ of previous experiences and the current reward p. For a value
γ = 0.5, for example, and reasonably large t this function approximates the
average payoff generated with action a. The smaller γ, the stronger the impact
of past experiences; conversely, for γ = 1 only the reward of the last action is
considered, and all previous experiences discarded.

In the next step, the action probability is calculated according to the selec-
tion function:

pr(ai,t+1) =
eq(ai)α∑

j,j ̸=i e
q(aj)α

(2)

This selection function, also known softmax policy in RL, determines each
action’s selection probability depending on its own strength relative to the
strengths of the alternative actions. The parameter α, 0 < α < 1, is a learning
parameter that determines the rate of exploration. The larger α the less the
influence of the action strength on the selection probability.

3.2 State space partitioning

Learning by doing as described above happens for a given state s. This section
describes how states are represented and perceived in the agent’s internal world

5

model.

Representation and search paths The state s is represented internally as
a collection of attributes {att1 . . . attn}. Each attribute can have a number of
possible values, for example nominal values such as ’low’ or ’high’, or numerical
ranges, e.g. 0-1000. Attributes are connected by simple predicate logic. For
example the predicate ’(profit = low or profit = medium or profit = high) and
(sales 0 < sales < 1000)’ could describe the situation of a firm in the dimensions
profit and sales. This representation is called a ’state descriptor’, and denoted
with Ci. To each state descriptor a set of actions is bound from which the
action policy for this state can be learnt. This binding constitutes formally the
mapping ri : Ci → Ari .

The agent starts with a model covering all possible states. This initial state
entails all attributes with their value spaces, thus the coarsest representation
possible. In consecutive time steps, specialisations are developed stepwise by
the application of a heuristic search method. For this, the space of state de-
scriptions is represented as a tree, where nodes at higher levels contain coarser,
and nodes at deeper level of the tree finer mappings. Finer grained descriptions
are ’expanded’ from the predicates at higher levels. Which descriptions are ex-
panded depends on a heuristic evaluation function, which here is the agent’s
utility. The task of the search process is thus to find the level of detail that
describes the environment in such a way that generates the highest welfare for
the agent.

State expansion mechanism Before the internal model is updated, the
agent acts in its environment over a period µ. During this period, the value
of existing mappings R = {r1 . . . rn} is updated using feedback from the envi-
ronment. After each µ steps, the state expansion mechanism is applied: First
the node rexpand with the highest value on the search path is selected. If the
search path is empty, the root node is selected. From there, the next level of
the tree is expanded by partitioning the value spaces of the attributes constitut-
ing the conditions of rexpand. For attributes having discrete values, one value
is picked randomly. Attribute values representing numeric ranges are split in
half. For each partitioned attribute a new condition is created containing the
partitioned attribute values or value range, and the remaining original attribute
values (i.e. the number of successor nodes equals the number of attributes ×
2 in the original condition). The conjunction of the predicates of the resulting
level (after reduction) is equivalent to the expression of the parent node. By
mapping A to each newly created condition set the new mappings R′ are gen-
erated. The path from each r′ ∈ R′ up to the root node is added to the search
path (without duplicates). The conjunction of state descriptions with no chil-
dren in the search path is then equivalent to the initial state description. The
RL mechanism selects actions only from the matching descriptor in the search
path, so that there is always exactly one state description activated and one
action selected at a time.

6

For example, going back to the firm example above, of the initial, exhaustive
description Cinitial : (profit = low or profit = medium or profit = high) and (0 <
sales < 1000) the attribute profit is selected, and of its value range the value
’high’. The value space of the attribute is then divided into the expression
’profit=low or profit=medium’ and ’profit=high’, respectively. The resulting
specialised state descriptions are C1 : (profit =low or profit = medium) and
(0 < sales < 1000) and C2 : (profit = high) and (0 < sales < 1000), respec-
tively. Analogously, the sales attribute is split in two intervals and two successor
descriptors generated, so that four successor descriptors are created.

Model specialisation and generalisation With the state expansion mech-
anism it is possible to specialise the conditions in the state-action space in many
ways. A heuristic evaluation function determines the direction of this process.
The process proceeds as follows: First, the value of a state at time t is calculated
as

v(r, t) = v(r, t− 1) +
1

2
(q(at)− v(r, t− 1)) (3)

where q(at) is the reward of the executed action in the state described by r.
The function approximates an average of the state description value.

Next, before an expansion happens, some constraints have to be satisfied: A
parameter χ limits the maximum number of nodes the tree can have, i.e. the
maximum number of situations the agent can differentiate. New states can only
be evolved at the cost of ’forgetting’ other state descriptions (see below for dele-
tion). Due to the possible deletion of nodes it is possible that state descriptions
that were deleted are expanded again and endless cycles of generalisation and
specialisation occur. The right balance has to be found depending on the stabil-
ity of the environment; preventing many visits of identical descriptions too early
can be harmful if the environment changes; on the other hand it binds valuable
resources in the agent’s mental processing. To tune this balance, a function with
a cost parameter ζ, 0 < ζ ≤ 1 is used to compute a value determining whether
the successor description should be developed or not: The better a state descrip-
tor compared with the average performance (measured by the average reward
g) and the smaller ζ, the more recurrent expansions beginning from that state
descriptor are allowed (equation 4).

expand(r) =

true, if expansions(r) = 0 or

ζ × expansions(r)× g < v(r, t)

false, otherwise

(4)

A state description might lead to a good solution strategy, but if only rarely
visited is only of limited value (they only use up scarce memory space and
processing capabilities). Therefore the heuristic h accounts for the frequency of
state activations:

h(r, t) = v(r, t)
activations(r)

t
(5)

7

The search process selects the node with the maximal heuristic h(r, t) in the
search path, if the expand condition is satisfied.

Before new state descriptions are developed after µ steps, the descriptions
of the current level may be deleted if they did not outperform the value of their
parent states (performance could be, e.g., the average of the state description
values). The parent node becomes thereby the most specialised descriptor again.
Analogously to rule specialisation, this generalisation process sets in after a
certain time ν, ν < µ.

The process stops if all possible descriptions have been expanded (e.g. be-
cause χ has been reached) and the environment is reasonably stable so that dele-
tions of once developed specialised state descriptions do not occur frequently.

In principle, this mechanism tests the usefulness of different representations
of the state space. Useful partitions are kept and possibly refined further, useless
partitions are discarded and might be forgotten over time. The agent generates
and tests cognitive alternatives, and depending on experience, decides what to
know in the sense of (Rubinstein 1998) mentioned above.

Avoiding local search optima The mechanism may end up after a number
of expansions at a level of the tree with a particular configuration of descriptors
in the search path. There is no back-propagation of values, e.g. an update
of the successor states with a discounted value of the current state, so that
more general descriptions higher up in the tree or in other partially developed
paths can have higher, although outdated values. If such higher historical values
exist, they are used as a hypothesis that the current search path has become
suboptimal due to a changed environment, and that different paths should be
explored. The process may therefore switch with probability ρ, 0 ≤ ρ ≤ 1 to a
different, higher valued node in the tree and continue the expansion from there.
The path to this node becomes thereby the search path.

3.3 The complete algorithm

Table 1 summarises the main parameters and notation, then the algorithm is
listed in pseudo-code.

8

Table 1: Summary of notation

Name Description Value range

γ discount parameter for reward 0 . . . 1
ν interval at which underperforming rules can be deleted 0 . . . µ
µ interval at which new rules can be generated 0 . . .∞
ζ cost parameter determining the frequency

of re-exploring already visited paths 0 . . . 1
χ maximum number of nodes 1 . . .∞
p payoff (reward) 0 . . .∞
gt average payoff (reward) until time t 0 . . .∞
A action set of actions a
qat strength of action a ∈ A 0 . . .∞
prai action selection probability of action ai 0 . . . 1
Ci conditions that can be generated from input dimensions S
ri A state-action mapping Ci → A
v(r, t) The state value function
h(r, t) = f(v(r, t)) The heuristic selection function

{Setup and Initialisation}

Define the time discount for action updates γ
Define the update-cycle µ
Define the delete-cycle ν, ν < µ
Define the cost of expansion ζ
Define the maximum number of state descriptions χ
Define the probability of switching the search path ρ
Define the search path search path as a subset of R
Define expansions(r) as a function counting the number of expansions from
r
Define activations(r) as a function counting the times r matched a state
Define parent(n) as the parent of a node n in the state-tree T (R)
Define children(n) as a function returning all children of a node n in T (R)
Define uniform(x . . . y) as a uniform random distribution in the interval
x . . . y

q(a) = 0,∀a ∈ A
C1 ←[S
search path← r1 : {C1 → A}

repeat

{Reinforcement learning}

observe reward p(t− 1) received after executing at−1

9

gt = gt−1 +
1
2 (p(t)− gt−1)

q(at)← q(at−1) + γ(p(t)− q(at−1))

v(r, t)← v(r, t− 1) + 1
2 (q(at)− v(r, t− 1))

activations(r)← activations(r) + 1

compute situation s←[S
find the most specific mapping ra ∈ search path matching s

prai,t+1 ← eqai∗α∑
j,j ̸=i e

qaj∗α ,∀a ∈ Ara

select action at from the resulting distribution and execute at

{State space partitioning}

{Expand}
if rest(t

µ) = 0 and |R| < χ then

rexpand ← maxh(r, t),∀r ∈ search path
if ζ × gt × expansions(rexpand) < v(rexpand)) then
partition rexpand according to expansion mechanism intoR′ ← {r′0 . . . r′n}
initialise the value of the new states with v(rexpand,t)
append R′ as children of rexpand
add R′ to search path
expansions(rexpand)← expansions(rexpand) + 1

end if
end if

{Delete obsolete mappings}
if rest(t

ν) = 0 then
{determine the most recent expanded mapping rexpanded and its chil-
dren CH}
CH ← {ch1, . . . chn} ⊂ search path, children(chi) = ∅
rexpanded ← parent(chi)

if v(rexpanded, t) >
1

|CH|

|CH|∑
i=0

v(chi) then

delete CH
end if

end if

{Avoid local search optima}
if uniform(0, 1) > ρ then
clear search path

10

rmax ← max v(r, t),∀r ∈ R, children(r = ∅)
add the path from r1 to rmax to search path

end if

until end of simulation

4 Implications

The algorithm helps artificial agents to structure perceptional information from
the environment into useful knowledge bits, comparable to state-space partition-
ing approaches from machine learning (e.g. Uther and Veloso 1998; Lau and Lee
2004). Its main function is to distinguish between important and unimportant
features of the environment.

To keep computational complexity within bounds, BRA builds on certain
assumptions and limitations. Thus, the action set is given; no action sequences
or complicated plans can be computed; it is abstracted from any domain-relevant
knowledge. The algorithm as such combines knowledge and action elements in
a systematic, heuristic search process and finds strategies, it does not generate
them.

A major difference of the BRA approach from decision theoretic approaches
is its learning component. It allows to start from a state of ignorance, where
the desirability of actions is unknown, to a state of uncertainty where the action
weights indicate the likely result of an actions with respect to own utility, to
a state of certainty if the environment is deterministic. The last case is given
if action selection probabilities become close to 1. Only under such conditions
of absolute certainty and provided large enough differences in rewards, rational
maximising behaviour can be approximated.

The state space partitioning procedure has been specified to operate on crisp
sets. As a consequence, more realistic or vague representations are not possible,
although this might be desirable in certain circumstances. For example, consider
the partitioning rule that splits numerical intervals evenly into two exclusive
intervals (section 3.2). A fictive profit interval of a firm, 0 < profit < 1000,
could thus be split into low and high ranges by creating two new intervals
0 < profit ≤ 500 and 500 < profit < 1000. For low profit ranges probably a
different strategy will learnt as in the high range (for example successive lowering
of prices until higher turnover is achieved). For certain raw input variables, e.g.
300 < input(profit) < 700, it is however difficult to judge whether it is better to
the apply the low or high profit strategy. Fuzzy set theory and fuzzy logic (e.g.
Klir and Folger 1988) treats such uncertainty relations formally. Fuzzy logic
provides some measures that specify the degree to which set or expression an
element actually belongs, thus avoiding arbitrary matching if the boundaries of
a concept are unclear. In the engineering literature about fuzzy controllers (e.g.
Passino and Yurkovich 1998), approaches have been developed that combine
such fuzzy inference systems with rule-based action systems (e.g. Takagi and
Sugeno 1985) and Q-Learning (e.g. Jouffe 1998; Fuzzy Q-Learning). In fuzzy

11

controllers the conditions of production rules are represented as fuzzy concepts.
The input state is matched with a candidate set of rules and a distribution
of membership functions calculated that describe the degree of applicability of
these rules. In Fuzzy Q-Learning, the rule to be executed is typically determined
in a two-stage RL procedure in which first the action within a rule and then
across candidate rules is determined. Fuzzy concepts are obviously a natural
extension of the state representation in BRA. However, BRA cannot handle
intersecting sets of conditions, because in the case of two matching conditions
it is undefined which rule is activated. Integrating Fuzzy Q-Learning requires
some extensions: First additional state-expansion rules that generate predicates
with intersecting value ranges must be defined; then conflict resolution strategies
have to be defined that choose a rule with respect to their applicability according
to some fuzzy truth value.

5 Related approaches

To put the BRA approach into context, this section describes two characteristic
similar algorithmic approaches to learning, and compares them with BRA.

CLARION The cognitive architecture CLARION (e.g. Sun and Slusarz 2005)
was designed to capture implicit and explicit learning processes in humans. The
main assumption is that there are two different levels of learning: A subsymbolic
level and a more explicit, declarative level. The subsymbolic, or ’bottom’ level
represents low-skill, often repetitive tasks where learning proceeds in a trial-and-
error fashion. Knowledge on this level is typically not accessible and difficult
to express with language. On the symbolic, or ’top’ level, knowledge is directly
accessible and can be expressed with language. This level typically represents
more complex knowledge. It can be acquired by experience, but also by means
of explicit teaching.

The input state is made up of a number of dimensions, and each dimension
specifies a number of possible value or value ranges. Action selection takes
place using RL in the bottom level, or by firing production rules on the top
level. Which level is used is determined stochastically. After the action was
performed, top and bottom levels are updated with the feedback received from
the environment.

At the bottom level, the RL mechanism is implemented with a neural net.
The input layer is constituted of the values of the input state. Three intermedi-
ate layers are used to compute Q-values (allowing memory of action sequences),
while the fourth layer chooses an action according to standard RL.

At the top level, the rules conditions are constructed out of the input dimen-
sions, their consequents from actions available to the agent. The rules are, for
compliance with the bottom level, implemented as network. Rule extraction,
specialisation and generalisation is determined by feedback from the bottom
level: If there is no rule matching the current state and the action was suc-
cessful according to some performance criterion, a new rule is created with the

12

current state as the condition, and the performed bottom level action as conse-
quent. Existing successful rules matching the current input state are generalised
by adding another element of the input values to the condition. More specialised
rules that are now covered are deactivated. Unsuccessful rules are likely to be
too general rules and are specialised by removing elements from the condition.
Deactivated rules are reactivated if the specialised rule does not cover them any
more. An information gain measure that estimates the performance of rules
under different conditions serves as the success criterion.

Learning Classifier Systems Also Learning Classifier Systems (LCS) aim
at the extraction of rules. The basic idea is to start with a set of initial rules
(classifiers) and to evolve this set over time by application of mechanisms for
modification, deletion and addition of new rules. Whereas earlier LCS (e.g.
Holland 1975) relied mostly on the Genetic Algorithms paradigm newer ver-
sions have more in common with RL approaches and therefore have also been
described as generalised RL (Sigaud and Wilson 2007).

An LCS consists of a population of classifiers. A classifier contains a condi-
tion part, an action part, and an estimation of the expected reward. Typically,
the condition part consists of the three basic tests 0 (property does not exist),
1 (property exists) and #. # represents a generalisation and stands for both 0
or 1. A classifier has one action as a consequent, but typically several classifiers
match a condition in the environment and hence compete with each other. The
action to be executed is the selected according to some RL mechanism (e.g. the
ϵ-greedy policy).

Many LCS use a genetic algorithm to create new rules by selecting and
recombine the fittest classifiers from the population (where fitness is, e.g., the
expected reward received from the environment). A covering operator is called
whenever the set of matching classifiers is empty. The operator adds a classifier
matching the current situation with a randomly chosen action to the population.
Sophisticated systems may limit the population size, and add corresponding
eviction and generalisation procedures.

Newer approaches have more in common with RL and even symbolic ap-
proaches to learning. The FOXCS system (Mellor 2008), e.g., uses a symbolic
representation of rules. Rule mutation, covering and deletion is based on logi-
cal operations using the Prolog logic programming language. Anticipation-based
classifier systems (e.g. Butz 2002; ACS) extend the classifier representation with
the description of the next state and build a model of transitions. A speciali-
sation mechanism is applied when the classifier oscillates between correct and
incorrect predictions, indicating that a splitting of the condition might improve
the match. Generalisation is based on complex algorithms that estimate whether
generalisation will result in an improvement (see also Sigaud and Wilson (2007)
for an overview of LCS).

Comparison RL is the most important aspect for generating action-centred
knowledge in the related approaches as well as for the Bounded Rationality

13

Algorithm. Differences exist in the way such knowledge is used to build internal
models of the environment:

• BRA does not start with a psychological model of skill acquisition as
CLARION or no explicit model at all as machine learning, but a sociopsy-
chological model of bounded rationality.

• The BRA uses a pure symbolic representation of conditions with simple
first order predicate logic. CLARION has to transform them in a network
structure, many LCS use binary strings.

• CLARION modifies rules only after evaluation of bottom level actions;
ACS compares prediction errors. BRA is much less sophisticated here,
using a simple heuristic generate-and-test procedure to decide whether a
rule should be specialised or generalised. If the test phase fails (possibly
only after a long time when the environment changes), the generated rule
is deleted again. CLARION and more sophisticated LCS keep detailed
statistics and perform complex estimations to decide about generalisation
and specialisation of specific rules.

• BRA starts with a state description covering all possible states and builds
a model by searching heuristically through the space of possible descrip-
tions that can be expanded logically from the initial descriptor. In CLAR-
ION and most LCS, new state descriptions are generated when they are
encountered. it is not necessary to describe the state space fully. The
exploration of the state space in BRA is more ’structured’. But BRA is
also more likely to not discover useful descriptions - if the best differenti-
ations are very fine-grained, the chance that the process stops developing
new states is much higher because a path might (wrongly) appear as not
improving to the agent. That is, in BRA a conflict between efficiency and
the cost of cognitive capabilities exists (intended by design - see section
2) that may produce different and, compared to pure machine learning,
suboptimal results.

6 An example - statistical discrimination

The concept of statistical discrimination is based on the principal-agent decision
problem and was first introduced by Arrow (Arrow 1973). In the example simu-
lation experiment the principal-agent problem is represented by the relationship
between employers and workers. Workers decide whether to invest or not invest
into skills, but these investments are not fully observable by the employers. Em-
ployers have to rely on signals like an employment test result or an interview to
estimate productivity. In the absence of clear results, they might however use
physical markers like gender or race as an indicator. Statistical discrimination
exists when an employer is reluctant to hire a certain type of worker because he
expects a low productivity of that type. This equilibrium can be self-reinforcing

14

if the workers of the discriminated type come to the conclusion that it is not
worth investing because they do not expect to get hired.

The simulation is based on a classroom experiment reported by Fryer et al
(2005). They find emergence and persistence of statistical discrimination in
some experiments they conducted, whilst in others discrimination did not evolve.
The hypothesis of this experiment is that if BRA is a valid model of decision
making, some simulations must exhibit similar patterns of statistical discrimi-
nation as observed by experimental game theorists.

In the model there are 10 worker agents and 5 employer agents. Workers are
assigned the colours green and purple randomly with equal probability. Each
round, workers and employers are paired randomly, and employers must decide
to hire or not to hire a worker depending on the result of the employment test
and the colour of the worker. Skill investment costs are drawn randomly and
reported to the workers, i.e. the investment costs in the long run are the same
for each colour. The investment cost varies between 0 and 0.1. If no investment
is made, no cost is incurred. The test outcome might be either good (R) or bad
(B). The probability of a good test result is 0.2 if no investment was made, and
0.5 if a investment was made. Two draws are made, so that if the result is RR or
BB employers can infer with a relatively high certainty the productivity of the
worker: Because the probability that a worker did not invest is more than twice
as high if the outcome is BB, it is very likely that the worker most likely did
not invest. Conversely, an RR result is a strong hint that the worker invested;
however, some uncertainty remains. In the event of RB (or BR), there is the
highest uncertainty. It is therefore expected that in this condition colour might
be used as a cue to aid decision making.

The payoffs are as follows: If a worker is hired he receives of 0.3, if he was
no hired 0.15. His payoff is 0.3 minus the investment cost (if there was any),
and 0.15 minus the investment cost, respectively. Employers receive a payoff of
0.2 if the worker was not hired, 0.4 if a worker who invested was hired, and 0 if
a worker who did not invest was hired.

This model setup is with minor variations identical to the original setup
in Fryer et al (2005). One difference is the magnitude in rewards, which was
divided by 10 for this experiment, and the distribution of players. Furthermore,
in the original game there were as many employers as workers, and workers
were split exactly half in green, and half in purple. In the simulation, workers’
groups are partitioned randomly, so that one worker group is often larger than
the other. Also, there are only half as much employers as workers. The reason
is to support learning: The smaller the worker group, the more likely similar
behaviour simply by chance and thus it is ’easier’ to discriminate. Similarly,
with fewer employers variation may decrease by chance, and feed back into
worker decisions.

The agents are implemented as follows: Workers have a simple mapping with
an empty state description and actions invest/not-invest as action set. Thus the
choice is solely based on the payoff received (simple RL). Employers on the other
hand may use the different test outcomes and colours of the agents explicitly to
construct rules according to BRA. The action set consists of hire/not-hire. Rules

15

may then be generated that differentiate between colour only, between colour
and test result, or only between test results. If the majority of generated rules
is based on colour only, statistical discrimination is clearly observable; if rules
are only based mainly on test outcomes there is meritocracy. More precisely,
three different sets of state-action mappings are specified. The first set contains
only one initial rule r1 : C1 → Ar1 with C1 : (test-result = BB) and (colour
= purple or colour = green), the second set contains r2 : C2 → Ar2 with C2 :
(test-result = RR) and (colour = purple or colour = green), and the third set is
given by r3 : C3 → Ar3 with the C3 : (test-result = BR) and (colour = purple
or colour = green). This specification in principle pre-wires some knowledge
about the relationship between test-result and productivity by restricting the
possible combinations. Per mapping, only two rules can be generated, limiting
the maximum possible rules to six. A different possibility would be to not
specify exclusive sets and let agents learn from an initial rule r0 : C0 → Ar0

with C0 : (test-result = BB or test-result=BR or test-result=RR) and (colour
= purple or colour = green). This would increase the possible combinations
to twelve and make learning much more difficult. Experimenting with such
a specification confirmed this. Furthermore, such a setup would mean that
agents have to learn facts and relationships that were common knowledge in the
classroom experiment (e.g. the higher probability that a worker invested when
the test-outcome was RR).

The expansion parameters are fixed with ζ = 0.05, ρ = 0.3, µ = 100, ν = 75,
χ = 100. The learning parameters α and γ, i.e. learning rate and reward
discount are varied both at the employer and worker side. Note that ζ is set to
a small value to allow employer agents to re-evaluate their rules frequently. The
hypothesis here is that due to the reciprocal behaviour of agents revaluations
of extracted rules are necessary to adapt to the simulation dynamics easier and
more often.

Fryer et al (2005) report that many experiments had very similar hiring rates,
while there were some where strong discrimination was observed. The result
shown in their paper exhibits a pattern where discrimination develops quickly
and persists over the number of time steps played (about 20). For example,
the hiring rate of green players quickly jumped and remained at 0.8, even after
they slightly decreased investment activity; purple workers however would invest
less, and consequently get hired less often at a level of about 0.4. The classroom
discussion showed that employers started with a belief that purple workers did
not invest. When they were not sure whether the purple player invested or not,
they would rather not hire them. Because chances for purple workers to get
hired decreased, they stopped investing, by this reinforcing employers’ beliefs.

Using experimentation and a genetic algorithm optimal values for the α and
γ values were searched for. As a simple fitness indicator, the average difference
between hiring levels of green and purple workers over the whole simulation
is computed. Using the Fryer et al (2005) experiment as a benchmark, those
simulations were closer looked at that developed a similarly high, persistent
discrimination. Figure 1 gives an impression how different parameter settings
affect the outcome. In general, it seems that settings with low learning param-

16

Figure 1: Difference in hiring hiring rates for various parameter settings, sorted
by absolute difference αworker, γworker, αemployer,r1 , αemployer,r2 , αemployer,r3 ,
γemployer,r1 , γemployer,r2 , γemployer,r3 .

eters for workers (early lock-in into investment/non-investment behaviour) had
the best chances to produce the largest differences between groups. The main
influence on fit is workers’ α. The smaller this value, the more likely that dis-
crimination occurs. The likely reason for this behaviour is that with relatively
stable worker behaviour, employers have enough time to adjust their strategies.
The more unpredictable worker behaviour the harder to respond, and thus less
likely that an equilibrium emerges.

Figures 2 and 3 show one of the simulations where discrimination emerged
clearly. Hiring and investment rates were measured every 10 timesteps, and are
given as moving averages over 10 measurement points, i.e. over 100 steps. As
figure 2 shows, the employment level is very high for purple workers and low
for green workers. This pattern is very similar to the classroom experiment.
Moreover, it seems that this equilibrium state can collapse very quickly for no
or only very little changes in investment behaviour (see figure 3). The latter
result only occurs in the simulation, neither did it in the classroom experiment,
nor would one expect discrimination to change so drastically in reality.

It can be concluded that r1, r2 and their successors reinforce colour-based
decisions even though a BB test-outcome points to a higher probability of a
non-investing worker than an RR outcome. For example, C1 might have been
expanded into C11 : (colour = purple) and (test-result = BB) choosing action
’not-hire’ with small probability, and C12 : (colour = green) and (test-result =
BB), choosing ’not-hire’ with much larger probability. A likely explanation is
that hiring decisions in the event of the more ambiguous test-result BR favoured
purple workers but not green workers. This reinforces the purple workers’ invest-
ment behaviour which in turn supports discrimination even when test-results

17

Figure 2: Hiring rates (6 purple workers, 4 green workers). The relevant parame-
ters are αworker = 0.015, γworker = 0.3, αemployer,r1 = 0.05, αemployer,r2 = 0.05,
αemployer,r3 = 0.08, γemployer,r1 = 0.1, γemployer,r2 = 0.1, γemployer,r3 = 0.21

18

Figure 3: Skill investment rates (6 purple workers, 4 green workers). The
relevant parameters are αworker = 0.015, γworker = 0.3, αemployer,r0 = 0.05,
αemployer,r1 = 0.05, αemployer,r2 = 0.08, γemployer,r0 = 0.1, γemployer,r1 = 0.1,
γemployer,r2 = 0.21

19

are less ambiguous. An investment that is only slightly higher may thus lead
to a very high employment rate for purple workers (about 0.7 averaged over
the whole simulation), and conversely to low employment rates for green work-
ers. This confirms the hypothesis that discrimination can be a very persistent
feature, even if there are no or very limited facts supporting this behaviour.
Also, the author conducted experiments where learning only happened in the
BR case (in case of RR agents always hire, in case of BB never hire). The main
result is that the differences between colours was typically lower, supporting the
hypothesis that discrimination does not alone happen because of uncertainty,
but because of the beliefs that emerged during the simulation. However, to fully
comply with the empirical example, one would expect much lower investment
rates for green players because of the negative feedback from the employer side.
This is obviously also the reason why discrimination can disappear quickly in
the simulation: Whereas the drop in investment rates after time-step 3500 oc-
curs for both worker groups, employers react in the beginning only by hiring
less green workers which they are already reluctant to hire. Since also the pur-
ple workers invest less, this perturbation in employers’ rewards finally causes
employers to re-evaluate their strategies and treat both colours more similar,
roughly corresponding to the actual difference in investment rates.

7 Conclusion

In this paper, an algorithm that replicates simple decision process of simply
structured, bounded rational actors has been described, formalised and demon-
strated. The approach is of a pragmatic nature and motivated by the application
of machine learning techniques in ACE models. As such it adds to RL based
systems in the agent-based modelling field and combines elements already used
by learning architectures such as CLARION and LCS. BRA is different from
these approaches as it is less general than a cognitive architecture and explicitly
built upon a simple sociopsychological approach to learning.

The motivation of the example simulations was to assess the usability of the
algorithm from the perspective of verification as well as validation. A model of
statistical discrimination was chosen for this purpose. The results showed that
BRA agents

• learn to differentiate between different behaviours

• are able to this in quite dynamic environments

• are thereby able to replicate to a large - but not full - extent patterns that
have been observed in behavioural game theory

Only if agents have enough pre-wired knowledge about the game, similar results
as in reality can emerge. If BRA is used as a black box to learn every aspect
of the game from scratch it will fail, because not particular attention was paid
to the problem of combinatorial explosion (a weakness of many reinforcement
learning approaches in general).

20

Several limitations of the approach have been indicated, and will be explored
in future work. Important topics include: The fuzzification of state descriptions
to prevent wrong classifications due to crisp set boundaries; the dynamic addi-
tion and deletion of new input dimensions to allow for a more dynamic evolution
of the state space; better handling of combinatorial explosion making simula-
tions results less dependent on the initial setup of the rule system.

References

Arrow K (1973) The theory of discrimination. In: Ashenfelter O, Rees A (eds)
Discrimination in Labor markets, Princeton University Press, Princeton, NJ

Brenner T (2006) Agent learning representation: Advice on modelling economic
learning. In: Tesfatsion L, Judd K (eds) Handbook of Computational Eco-
nomics, 2, Elsevier, chap 18, pp 896–942

Butz M (2002) An algorithmic description of acs2. In: Lanzi P, Stolzmann
W, Wilson S (eds) Advances in learning classifier systems, Lecture Notes in
Artificial Intelligence, Springer, Berlin, vol 2321, pp 211–229

Camerer C, Ho T (1999) Experienced-weighted attraction learning in normal
form games. Econometrica 67(4)

Erev I, Roth A (1998) Predicting how people play games: reinforcement learn-
ing in experimental games with unique mixed-strategy equilibria. American
Economic Review (88)

Fryer R, Goeree J, Holt C (2005) Experience-based discrimination: Classroom
games. Journal of Economic Education 36(2):160–170

Holland J (1975) Adaptation in natural and artificial systems: An introductory
analysis with application to biology, control, artificial intelligence. University
of Michigan Press, Ann Arbor

Jouffe L (1998) Fuzzy inference systems learning by reinforcement methods.
IEEE Transactions On Systems, Man and Cybernetics-Part C, Applications
and Reviews 28(3):338–355

Kahnemann D, Tversky A (1979) Prospect theory: An analysis of decision under
risk. Econometrica 27

Kirman A, Vriend N (2001) Evolving market structure: An ace model of price
dispersion and loyalty. Journal of Economic Dynamics & Control 25:459–502

Klir G, Folger T (1988) Fuzzy Sets, Uncertainty, and Information. Prentice Hall,
Englewood Cliffs, N.J.

Lau HY, Lee IS (2004) Adaptive state space partitioning for reinforcement learn-
ing. Engineering Applications of Artificial Intelligence 17:577–588

21

LeBaron B, Arthur W, Palmer R (1999) Time series properties of an artificial
stock market. Journal of Economic Dynamics & Control 23:1487–1516

Markham A (1999) Knowledge Representation. Lawrence Erlbaum Associates,
Mawah NJ

Mellor D (2008) A learning classifier system approach to relational reinforcement
learning. In: Bacardit J, Bernad-Mansilla, E, Butz M, Kovacs T, Llor X,
Takadama K (eds) Learning Classifier Systems (LNAI), Springer, vol 4998,
pp 169–188

Passino KM, Yurkovich S (1998) Fuzzy Control. Addison Wesley

Roth A, Erev I (1995) Learning in extensive form games: Experimental data
and simple dynamic models in the intermediate run. Games and Economic
Behaviour 6

Rubinstein A (1998) Modeling Bounded Rationality. MIT Press

Sigaud O, Wilson S (2007) Learning classifier systems: A survey. Soft Comput-
ing 11:1065–1078

Simon H (1956a) A behavioural model of rational choice. In: Simon H (ed)
Models of man, social and rational: mathematical essays on rational human
behavior in a social setting, Wiley, New York

Simon H (1956b) Rational choice and the structure of the environment. In:
Simon H (ed) Models of man, social and rational: mathematical essays on
rational human behavior in a social setting, Wiley, New York

Sun R, Naveh I (2007) Social institution, cognition, and survival: A cognitive-
social simulation. Mind and Society 6(2):15–42

Sun R, Slusarz P (2005) The interaction of the explicit and the implicit in skill
learning: A dual-process approach. Psychological Review 112(1):159–192

Sutton R, Barto A (1998) Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA

Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications
to modeling and control. IEEE Transactions on Systems, Man, and Cyber-
netics 15:116–132

Uther WTB, Veloso MM (1998) Tree based discretization for continuous state
space reinforcement learning. In: Proceedings of the fifteenth national confer-
ence on Artificial intelligence, American Association for Artificial Intelligence,
pp 769–774

22

